Graphing Lines (Linear Functions)

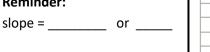
A situation that grows at a constant rate. The graph is a line.

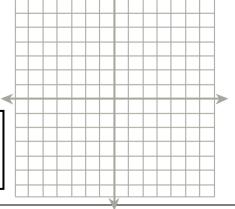
$$y = mx + b$$

Graph each of the following lines using the slope and y-intercept.

$$y = \frac{2}{3}x - 4$$

$$y = 5 - 3x$$


y-intercept:


y-intercept:

slope:

slope:

Reminder:

Writing an Equation of a Line Given Two Points

Write the equation of the line that passes through the points (-4, 5) and (2, -4).

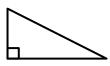
- ① Find slope (m)
- ② Substitute the slope into the equation y = mx + b
- 3 Substitute one of the points (x, y) into the equation from step 2 and solve for b.
- Write final equation.

Area Formulas:

Triangle

Rectangle

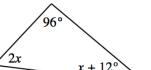
Parallelogram



Trapezoid

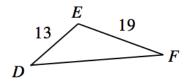
Pythagorean Theorem Used to find the missing side length in a RIGHT triangle or the distance between two points.

$$leg^2 + leg^2 = hypotenuse^2$$



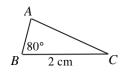
Parallel and Perpendicular Lines

Slopes of parallel lines:


Slopes of perpendicular lines:

Triangle Angle Sum Theorem

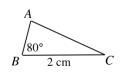
and


Triangle Inequality Theorem

Naming Parts of Geometric Figures:

Line

Vertex


Ray

Line Segment

Angle

Naming an Angle

Exponential Models $y = ab^x$

1. *x*

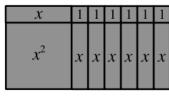
-2

0

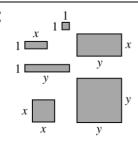
1

2

		-
у		у ± 4
0.75		12+
1.5	× 2	9
3	× 2	6 + /
	× 2	- T
6	× 2	7
12	~~	-3 + 3


2. Write an equation that represents this information: A new car purchased for \$27,000 loses 15% of its value each year.

a =


b =

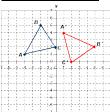
3. Write an equation that represents this information: A rare coin purchased for \$150 gains 3% of its value each year.

Area Models:

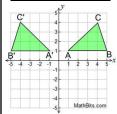
Algebra Tiles:

Using an Area Model for Multiplication

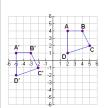
Multiply (x + 2)(2x - 3) =


PRODUCT

SUM



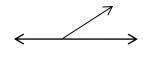
Rigid Transformations and Prime Notation


Rotation (turn)

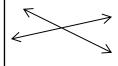
Reflection (flip)

Translation (slide)

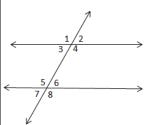
Angle Pair Relationships


Complementary

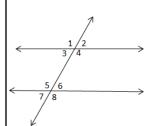
Two angles with a sum of ____


Supplementary

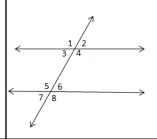
Two angles with a sum of ____


Vertical

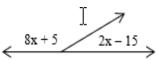
___ congruent angles on ___ sides of an intersection point of 2 lines.



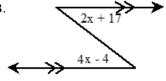
Relationships with Transversals


Corresponding Angles

Alternate Interior Angles



Same Side Interior Angles



Solving Angle Relationships Algebraically

A.

В.

Polygon Graphic Organizer:

Scalene Triangle	1

Isosceles Triangle

Equilateral Triangle

Scalene Right Triangle

Isosceles Right Triangle

Regular Pentagon

Parallelogram

Rhombus

Regular Hexagon

